Get started in Arduino

Setup driver

Before you use miniD1 boards, you need setup ch340g driver.

Python

On Windows you need install Python 2.7.10. On Linux & MAC OSX, you don't need install it, comes preinstalled with OS.

Installing Hardware package

There is two ways to install hardware package, Boards Manager and git.

Installing with Boards Manager

Starting with 1.6.4, Arduino allows installation of third-party platform packages using Boards Manager. We have packages available for Windows, Mac OS, and Linux (32 and 64 bit).

```
1. Install Arduino 1.6.7 from the Arduino website.
```

1

2. Start Arduino and open Preferences window.

3. Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into Additional Boards Manager URLs field. You can add multiple URLs, separating them with commas.

1

4. Open **Tools**→**Board:xxx**→**Boards Manager** and install **esp8266 by ESP8266 Community** (and don't forget to select your ESP8266 board from Tools > Board menu after installation).

-

Installing use git (Recommend)

We recommend using git to install Hardware package, you can always get the latest version of it.

1.

Install Arduino 1.6.7 from the Arduino website.

2. 3.

> Clone repository into <Sketchbook_directory>/hardware/esp8266com/esp8266 directory (or clone it elsewhere and create a symlink), you may need to create the hardware directory if it does not exist.

4.

cd hardwaremkdir esp8266comcd esp8266comgit clone
https://github.com/esp8266/Arduino.git esp8266

5.

6.

You should end up with the following directory structure:

7.


```
--- LICENSE
```

8.

9.

Download binary tools (you need Python 2.7)

10.

cd esp8266/tools

python get.py

11.

1.

Restart the Arduino IDE

2.

3.

To get the latest version anytime,

in <Sketchbook_directory>/hardware/esp8266com/esp8266 simply run 4.

4.

git pull

5.
 6.
 Restart the Arduino IDE
 7.

Configure Board

After install hardware package, you will see mini D1 boards in the **Tools** \rightarrow **Board:xxx**

Upload Using

Serial – Use USB port on board to upload flash

```
OTA – Use OTA to upload flash
÷
CPU Frequency
н.
80MHz
÷.
160MHz
÷
Flash Size
÷.
4M (3M SPIFFS) - 3M File system size
н.
4M (1M SPIFFS) - 1M File system size
÷
÷.
Upload Speed
н.
÷
921600 bps - recommend
.
Installing Examples
```

Simple Way

```
    Download Examples files form here.
    .
    Rename the uncompressed directory to D1_mini_Examples
    .
    .
    Move directory to <Sketchbook_directory>
    .
    .
    The path will look like <Sketchbook_directory>/D1_mini_Examples
    .
    .
    Restart the Arduino IDE
```

10.

11.

All examples are under File \rightarrow Sketchbook \rightarrow D1_mini_Examples

12.

Git Way (Recommend)

We recommend using git to install Examples, you can always get the latest version of it.

1.

Clone repository into <Sketchbook_directory> directory (or clone it elsewhere and create a symlink).

2.

cd <Sketchbook_directory>git clone
https://github.com/wemos/D1 mini Examples.git

3.

4.

To get latest version anytime, in <Sketchbook_directory>/D1_mini_Examples simply run

5.

git pull

6.
7.
Restart the Arduino IDE
8.
9.
All examples are under File→Sketchbook→D1_mini_Examples
10.

Hello world!

Open File→Sketchbook→D1_mini_Examples→01.Basics→HelloWorld
 3.
 Click Upload
 4.
 5.
 After upload, open Tools→Serial Monitor, set baudrate to 9600 baud.
 6.
 7.
 Have fun!

Get started in nodemcu

Setup driver

Before you use mini D1 boards, you need setup ch340g driver.

Reference

D1 mini compatible with nodemcu. However, we recommend that you use arduino with them.

There is some website help you use WeMos Boards with nodemcu.

http://www.nodemcu.com https://github.com/nodemcu/nodemcu-firmware API:https://github.com/nodemcu/nodemcu-firmware/wiki/nodemcu_api_en